S_n denotes the sum of cubes of first n natural numbers and t_n denotes the sum of first n natural numbers then find the value of $\sum_{r=1}^n \frac{s_r}{t_r}$

SOLUTION:

D. C.
Sn is sum of cubes of first n
patural numbers.
$5n = (n)^2 (h+1)^2$
to is sum of first n natural numbers
$:: t_{p} = (n)(n+1)$
2
$n p h p S n - (n) (n+1) = n^2 + n$
$\frac{Sn}{tn} = \frac{(n)(n+1)}{2} = \frac{n^2 + n}{2}$
$\frac{x=0}{1} \leq \frac{x}{t_r} = \frac{x^2+r}{2} = \frac{x^2+r}{2}$
r=1 2
= (n)(n+1)(n+1) + (n)(n+1)
12 4
$= (n)h+1)\left(\frac{2n+1}{3}+1\right)$
4 3
= (n) (n+1) = (2n+4)
4 3
=(n(n+1)(n+2)
6